Impact of Sulfur Oxides on Mercury Capture by Activated Carbons

Albert A. Presto and Evan J. Granite CMU and NETL

DOE/NETL 2007 Mercury Control Conference Pittsburgh, PA December 12, 2007

National Energy Technology Laboratory

Challenge

 Power plants with high concentrations of sulfur oxides show decreased mercury capture efficiency by activated carbon injection

 Sulfur inhibition of mercury capture is a key technical hurdle to meeting CAMR

Sulfur Oxides (SO_X) in Flue Gas

- Coal S oxidized in the furnace primarily to sulfur dioxide (SO₂), with small amounts of sulfur trioxide (SO₃)
 - SO₂ concentrations range from hundreds of ppm to over
 1,000 ppm and SO₃ concentrations are generally 0 30 ppm
- SO₃ (ppm levels) is injected into the flue gas as a conditioning agent to improve ESP performance
- SO₃ can form from the oxidation of SO₂ across SCR catalysts

High - SO_X Mercury Capture Examples

AEP Conesville

- −High-sulfur coal, ~ 30 ppm SO₃ in flue gas
- Maximum mercury capture: 31% (Darco E-12 at 12 lb/MMacf)

Mississippi Power Plant Daniel

- -6 ppm SO₃ reduced native mercury capture by 40% and effectiveness of ACI (Darco Hg at 10 lb / MMacf) by 25 – 35%
- Other utilities see same inhibiting effect of SO₃
- Laboratory results at EERC
 - Adding 1600 ppm SO₂ to simulated flue gas (with NO₂ present)
 caused previously captured Hg²⁺ to desorb from carbon

Possible Mechanisms for SO_x Effect

- Competitive adsorption between Hg and SO_x
 - -SO₂ and SO₃ compete with Hg for Lewis base sites on the carbon surface
 - SO_x capture could be favored kinetically & thermodynamically
 - SO₂ has a strong binding energy (~80 kJ mol⁻¹) to activated carbon
 - Concentrations of SO₂ (100s >1000 ppm) and SO₃ (0 10s ppm) are much greater than the concentration of Hg (~1 ppb)
 - Activated carbon catalyzes formation of S(VI)
 - $SO_2 + H_2O + \frac{1}{2}O_2 \rightarrow H_2SO_4$
 - Oxygen source can either be flue gas $(O_{2(g)})$ or surface-bound oxygen
 - Activated carbon is a catalyst to oxidize SO₂
 - H_2SO_4 has low volatility ($P_{VAP} = 1 \text{ torr at } 300^{\circ} \text{ F}$)
 - NO₂ or another electron sink may be required to have a high conversion to sulfate

Possible Mechanisms for SO_X Effect

- Competitive adsorption between Hg & SO_x, continued
 - -SO₃ adsorbs to activated carbon
 - \bullet SO₃ + H₂O \rightarrow H₂SO₄
 - SO₃ can also react with surface oxygen to form H₂SO₄
 - AC catalysts for H₂SO₄ are self-poisoned by SO₃
- Activated carbon catalyzes formation of flue gas halides
 - $-SO_2 + Cl_2 \rightarrow SO_2Cl_2$
 - Reaction can remove surface-bound halogens
 - Analogous reactions for NO and CO

Typical Experimental Method

- Test activated carbons (Darco FGD and Hg-LH) in a packed-bed reactor
 - Realistic Hg concentration: 9.3 μg Nm⁻³
 - Temperature: 300° F
 - 200 mg activated carbon
- Expose carbons to simulated flue gas (SFG)
 - − 5.3% O₂, 12.5% CO₂, 0 − 1.5% H₂O, 500 ppm NO, 50 ppm HCl
 - Vary SO₂ concentration from 0 1870 ppm; wet and dry SFG
 - Vary SO₃ concentration from 0 100 ppm; dry SFG only
 - 6 hour exposure time
- Analyze exposed carbons for mercury content (μg/g) and sulfur content via ICP-AES
 - Monitor gas-phase species with mass spectrometer (MS)

Experimental Method

FLUE GAS IN

Results: Hg Capture

Hg capture is independent of SO₂ concentration

Results: S Content

- Initial S content of AC
 - -0.7 1.3%
- Hg-LH captures more sulfur than FGD
 - Hg-LH is superior for Hg capture, and SO₂ adsorbs to the same sites as Hg
- More sulfur is captured when water is present in the SFG
- XPS data show that sulfur exists as sulfate on the AC surface

Results: Hg Competition with SO_x

SO₃-free experiments

- −Hg content is independent of SO₂ concentration (0 1870 ppm) in the SFG
- -Sulfur exists as sulfate on the AC surface
- -Water vapor (1.0 − 1.5%) reduces Hg capture by ~30%
- -Darco FGD captured more Hg than Darco Hg-LH
 - During tests of ACI, brominated carbons are typically superior to unpromoted carbons
 - May result from excellent gas-solid contact in the packed bed, but poor contact in flight

Results: Hg Competition with SO_x

- Experiments using SO₃ (20 100 ppm)
 - -Two routes of SO₃ exposure
 - Vary concentration in the SFG from 20 100 ppm
 - Pre-expose AC to 50 ppm SO₃ for 1 hour
 - -Adding SO₃ gave higher S content than SO₂ alone
 - 1870 ppm SO_2 and $Hg-LH \rightarrow 2.5\% S (dry SFG)$
 - 20 ppm SO₃ and Hg-LH \rightarrow 3% S
 - -SO₃ reduced the final mercury content
 - 20 ppm SO₃ reduced Hg by 80%
 - Higher concentrations of SO₃ lead to lower Hg content
 - Both methods of SO₃ exposure reduce Hg content evidence that SO₃ is favored both kinetically and thermodynamically

Method of Hg Capture Inhibition: Mass Spectrometer Scans

- $SO_2 = 1870 \text{ ppm}$
- MS data show no evidence of flue gas halides
 - Does not rule out formation of halides
 - Easily hydrolyzed
 - Perhaps below detection limit?
- Concentrations above and below bed are constant

Mercury capture inhibition because of flue gas halide formation is unlikely

Method of Hg Capture Inhibition: Competitive Adsorption

- Does the data show a contradiction?
 - -SO₂ in SFG has no effect on Hg capture
 - -SO₃ in SFG greatly reduces Hg content
 - -Both SO₂ and SO₃ increased the sulfur content of the AC
- If Hg and SO_x compete for the same sites on the AC surface, then the sulfur content is the important variable

Method of Hg Capture Inhibition: Competitive Adsorption

Method of Hg Capture Inhibition: Competitive Adsorption

- Hg content decreases as S content increases
 - –Almost no Hg capture for S content > 6%
 - H₂SO₄-FGD (10.6% S) captured almost no mercury
 - Strong evidence for competitive adsorption
- SO₃ appears to have a stronger effect than
 SO₂ for a given S content
 - May result from physically-bound SO₂ that does not inhibit Hg capture

On-Line Mercury Breakthrough Experiments

- PS Analytical Sir Galahad CEM used to verify that sulfur inhibits initial mercury capture
 - -Prior experiments assume capacity reflects in-flight capture
- SFG composition: 10 12 μ g Hg/Nm³, 5.3% O₂, 12.5% CO₂, 500 ppm SO₂, 50 ppm HCI , balance N₂
 - -NO_(gas) omitted because it interfered with Hg detection
- Three carbons tested
 - -Raw Darco Hg-LH (0.7% S)
 - -Hg-LH exposed to 100 ppm SO₃ for 2 hours (8.4% S)
 - -H₂SO₄-FGD (10.6% S)

Mercury Breakthrough Data

Results: Mercury Breakthrough

- Mercury capacity and time to 100% breakthrough decreased as S increased
 - -Raw Hg-LH
 - Captured 125 μg g⁻¹
 - 10% breakthrough after 3 hrs
 - -SO₃-exposed Hg-LH
 - Captured 8.4 μg g⁻¹
 - 55% initial breakthrough
 - 100% breakthrough after 3.5 hrs
 - -H₂SO₄-FGD
 - Captured <0.5 μg g⁻¹
 - >80% initial breakthrough
 - 100% breakthrough after 1 hr

Results: Mercury Oxidation

- All samples oxidized Hg⁰ to Hg²⁺
- At 100% breakthrough
 - -SO₃-exposed Hg-LH oxidized 60% of inlet Hg⁰
 - -H₂SO₄-FGD oxidized 30% of inlet Hg⁰
- Previous research indicated that Hg oxidation requires surface-bound Hg
 - Mercury oxidation at 100% breakthrough may indicate multiple active sites for mercury interaction

Multiple Hg Sites

- SO₂ forms bonds to carbon surface with energy of adsorption <50 kJ mol⁻¹ and >80 kJ mol⁻¹
- SO₂ and Hg compete for binding sites
- By analogy, we can generalize
 - -Sites with high binding energy for capturing Hg
 - -Catalytic sites with low binding energy for Hg
- Mercury-surface binding energy dependent on specific surface functional groups
 - -Binding energies decrease in series for lactone > carbonyl > phenol > carboxyl

Multiple Hg Sites: Hypothesis

- High binding energy sites are occupied first
 - Mercury is strongly bound
 - Responsible for mercury capacity
- Catalytic sites (low binding energy)
 - Allow mercury to easily adsorb and desorb
 - -Mercury desorbs as Hg²⁺
- SO₃ follows a similar path
 - Binds to high binding energy sites first
 - Reduces Hg capacity
 - Binds to catalytic sites as high energy sites become filled
 - Less oxidation across H₂SO₄-FGD bed
 - High enough S(VI) loadings could render activated carbon useless as either a sorbent or a catalyst

Conclusions

- Hg capture is inhibited by competitive adsorption with SO_x species
- Hg capture is independent of SO₂ concentration (0 1870 ppm) and is reduced by SO₃ (20 100 ppm)
- S content is a more important variable than the gasphase SO_x concentration
 - Hg content decreases as S content increases
 - Sulfur on the activated carbon exists primarily as sulfate, which competes with Hg for binding sites
- There is no evidence of persistent flue gas halide formation

Conclusions

 Increasing S content reduces mercury content after 6 hrs exposure and mercury capture efficiency on shorter timescale

- There is evidence for multiple mercury binding sites on the carbon surface
 - -High energy sites capture mercury
 - Catalytic low energy sites

Implications for Future Work

- Common chemical alterations (i.e., bromination) may not overcome SO_x impact on Hg capture
 - Bromination makes Hg-accepting sites more reactive, and therefore makes the AC more reactive towards SO_x

Potential Solutions

- Co-injection of basic sorbents
- Sulfur removal upstream of ACI
- ACI upstream of SO₃ flue gas conditioning
- Alternative flue gas conditioning agents
- Reformulated SCR Catalysts
- Challenge: Maintain Hg capture efficiency similar to low-S flue gas

Interesting Notes

S⁶⁺ Inhibits Hg Flue Gas Capture by Carbons

• S⁶⁺: SO_{3(gas)}, Sulfate_(surface), and H₂SO_{4(surface)} However --

- Sulfuric-Acid Carbons Remove Hg from Hydrocarbon Liquids and Nitrogen Gas Streams
- Sulfuric Acid Scrubbers for Hg Capture from Smelter Gases – Mercuric Sulfate Precipitates Out
- Mercury Sulfates Previously Proposed as End Product on Activated Carbons
- Surface Oxygen Tied up by SO₃, Reduce Capacity

Acknowledgments

- ORISE
- Tom Feeley, DOE IEP Program
- John Baltrus (XPS)
- Robert Thompson (Hg and S analysis)
- Andrew Karash (CEM)
- Henry Pennline (Suggestions)
- Sharon Sjostrom (Excellent Work on SO₃)

Portions of this work were published in Environmental Science & Technology and Industrial & Engineering Chemistry Research

